Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.895
Filtrar
1.
N Engl J Med ; 387(22): 2045-2055, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449420

RESUMO

BACKGROUND: Iron content is increased in the substantia nigra of persons with Parkinson's disease and may contribute to the pathophysiology of the disorder. Early research suggests that the iron chelator deferiprone can reduce nigrostriatal iron content in persons with Parkinson's disease, but its effects on disease progression are unclear. METHODS: We conducted a multicenter, phase 2, randomized, double-blind trial involving participants with newly diagnosed Parkinson's disease who had never received levodopa. Participants were assigned (in a 1:1 ratio) to receive oral deferiprone at a dose of 15 mg per kilogram of body weight twice daily or matched placebo for 36 weeks. Dopaminergic therapy was withheld unless deemed necessary for symptom control. The primary outcome was the change in the total score on the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 260, with higher scores indicating more severe impairment) at 36 weeks. Secondary and exploratory clinical outcomes at up to 40 weeks included measures of motor and nonmotor disability. Brain iron content measured with the use of magnetic resonance imaging was also an exploratory outcome. RESULTS: A total of 372 participants were enrolled; 186 were assigned to receive deferiprone and 186 to receive placebo. Progression of symptoms led to the initiation of dopaminergic therapy in 22.0% of the participants in the deferiprone group and 2.7% of those in the placebo group. The mean MDS-UPDRS total score at baseline was 34.3 in the deferiprone group and 33.2 in the placebo group and increased (worsened) by 15.6 points and 6.3 points, respectively (difference, 9.3 points; 95% confidence interval, 6.3 to 12.2; P<0.001). Nigrostriatal iron content decreased more in the deferiprone group than in the placebo group. The main serious adverse events with deferiprone were agranulocytosis in 2 participants and neutropenia in 3 participants. CONCLUSIONS: In participants with early Parkinson's disease who had never received levodopa and in whom treatment with dopaminergic medications was not planned, deferiprone was associated with worse scores in measures of parkinsonism than those with placebo over a period of 36 weeks. (Funded by the European Union Horizon 2020 program; FAIRPARK-II ClinicalTrials.gov number, NCT02655315.).


Assuntos
Antiparkinsonianos , Deferiprona , Quelantes de Ferro , Ferro , Doença de Parkinson , Substância Negra , Humanos , Deferiprona/administração & dosagem , Deferiprona/efeitos adversos , Deferiprona/farmacologia , Deferiprona/uso terapêutico , Ferro/análise , Ferro/metabolismo , Levodopa/uso terapêutico , Neutropenia/induzido quimicamente , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Quelantes de Ferro/administração & dosagem , Quelantes de Ferro/efeitos adversos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Substância Negra/química , Substância Negra/diagnóstico por imagem , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Progressão da Doença , Método Duplo-Cego , Administração Oral , Encéfalo/diagnóstico por imagem , Química Encefálica , Dopaminérgicos/administração & dosagem , Dopaminérgicos/efeitos adversos , Dopaminérgicos/farmacologia , Dopaminérgicos/uso terapêutico , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico
2.
Mol Cell Neurosci ; 120: 103729, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447351

RESUMO

Among the pathological events associated with the dopaminergic neurodegeneration characteristic of Parkinson's disease (PD) are the accumulation of toxic forms of α-synuclein and microglial activation associated with neuroinflammation. Although numerous other processes may participate in the pathogenesis of PD, the two factors mentioned above may play critical roles in the initiation and progression of dopamine neuron degeneration in PD. In this study, we employed a slowly progressing model of PD using adeno-associated virus-mediated expression of human A53T α-synuclein into the substantia nigra on one side of the brain and examined the microglial response in the striatum on the injected side compared to the non-injected (control) side. We further examined the extent to which administration of the neuroprotective ganglioside GM1 influenced α-synuclein-induced glial responses. Changes in a number of microglial morphological measures (i.e., process length, number of endpoints, fractal dimension, lacunarity, density, and cell perimeter) were indicative of the presence of activated microglial and an inflammatory response on the injected side of the brain, compared to the control side. In GM1-treated animals, no significant differences in microglial morphology were observed between the injected and control striata. Follow-up studies showed that mRNA expression for several inflammation-related genes was increased on the A53T α-synuclein injected side vs. the non-injected side in saline-treated animals and that such changes were not observed in GM1-treated animals. These data show that inhibition of microglial activation and potentially damaging neuroinflammation by GM1 ganglioside administration may be among the many factors that contribute to the neuroprotective effects of GM1 in this model and possibly in human PD.


Assuntos
Gangliosídeo G(M1) , Microglia , Doença de Parkinson , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Gangliosídeo G(M1)/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Cell Rep ; 38(7): 110358, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172141

RESUMO

α-synuclein (α-syn) aggregation and accumulation drive neurodegeneration in Parkinson's disease (PD). The substantia nigra of patients with PD contains excess iron, yet the underlying mechanism accounting for this iron accumulation is unclear. Here, we show that misfolded α-syn activates microglia, which release interleukin 6 (IL-6). IL-6, via its trans-signaling pathway, induces changes in the neuronal iron transcriptome that promote ferrous iron uptake and decrease cellular iron export via a pathway we term the cellular iron sequestration response, or CISR. The brains of patients with PD exhibit molecular signatures of the IL-6-mediated CISR. Genetic deletion of IL-6, or treatment with the iron chelator deferiprone, reduces pathological α-syn toxicity in a mouse model of sporadic PD. These data suggest that IL-6-induced CISR leads to toxic neuronal iron accumulation, contributing to synuclein-induced neurodegeneration.


Assuntos
Interleucina-6/metabolismo , Ferro/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Quelantes de Ferro/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
4.
Oxid Med Cell Longev ; 2022: 3644318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222795

RESUMO

Reduced testosterone level is a common feature of aging in men. Aging, as a risk factor for several neurodegenerative disorders, shows declined mitochondrial function and downregulated mitochondrial biogenesis and mitochondrial dynamics. Mitochondrial biogenesis and mitochondrial dynamics are crucial in maintaining proper mitochondrial function. Supplementation with testosterone is conducive to improving mitochondrial function of males during aging. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of redox homeostasis, is involved in the ameliorative effects of testosterone supplementation upon aging. To explore Nrf2 role in the effects of testosterone supplementation on mitochondrial function during aging, we studied the efficiency of testosterone supplementation in improving mitochondrial function of Nrf2 knockout- (KO-) aged male mice by analyzing the changes of mitochondrial biogenesis and mitochondrial dynamics. It was found that wild-type- (WT-) aged male mice showed low mitochondrial function and expression levels of PGC-1α, NRF-1\NRF-2, and TFAM regulating mitochondrial biogenesis, as well as Drp1, Mfn1, and OPA1 controlling mitochondrial dynamics in the substantia nigra (SN). Nrf2 KO aggravated the defects above in SN of aged male mice. Testosterone supplementation to WT-aged male mice significantly ameliorated mitochondrial function and upregulated mitochondrial biogenesis and mitochondrial dynamics, which were not shown in Nrf2 KO-aged male mice due to Nrf2 deficiency. Testosterone deficiency by gonadectomy (GDX) decreased mitochondrial function, downregulated mitochondrial biogenesis, and altered mitochondrial dynamics balance in young male mice. Supplementation with testosterone to Nrf2 KO-GDX mice only ameliorated the alterations above but did not reverse them to sham level. Nrf2 deficiency attenuated testosterone efficiency in ameliorating mitochondrial function in the SN of aged male mice through mitochondrial biogenesis and mitochondrial dynamics to some extent. Activation of Nrf2 might contribute to testosterone-upregulating mitochondrial biogenesis and mitochondrial dynamics in the SN during aging to produce efficient mitochondria for ATP production.


Assuntos
Envelhecimento/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/deficiência , Substância Negra/efeitos dos fármacos , Testosterona/farmacologia , Envelhecimento/metabolismo , Animais , Suplementos Nutricionais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Substância Negra/metabolismo , Testosterona/administração & dosagem , Testosterona/deficiência , Caminhada
5.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216503

RESUMO

Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Restoration of nigrostriatal dopamine neurons has been proposed as a potential therapeutic strategy for PD. Because currently used PD therapeutics only help relieve motor symptoms and do not treat the cause of the disease, highly effective drugs are needed. Vildagliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor, is an anti-diabetic drug with various pharmacological properties including neuroprotective effects. However, the detailed effects of vildagliptin against PD are not fully understood. We investigated the effects of vildagliptin on PD and its underlying molecular mechanisms using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model and a 1-methyl-4-phenylpyridium (MPP+)-induced cytotoxicity model. Vildagliptin (50 mg/kg) administration significantly attenuated MPTP-induced motor deficits as evidenced by rotarod, pole, and nest building tests. Immunohistochemistry and Western blot analysis revealed that vildagliptin increased tyrosine hydroxylase-positive cells in the SNpc and striatum, which was reduced by MPTP treatment. Furthermore, vildagliptin activated MPTP-decreased PI3k/Akt and mitigated MPTP-increased ERK and JNK signaling pathways in the striatum. Consistent with signaling transduction in the mouse striatum, vildagliptin reversed MPP+-induced dephosphorylation of PI3K/Akt and phosphorylation of ERK and JNK in SH-SY5Y cells. Moreover, vildagliptin attenuated MPP+-induced conversion of LC3B-II in SH-SY5Y cells, suggesting its role in autophagy inhibition. Taken together, these findings indicate that vildagliptin has protective effects against MPTP-induced motor dysfunction by inhibiting dopaminergic neuronal apoptosis, which is associated with regulation of PI3k/Akt, ERK, and JNK signaling transduction. Our findings suggest vildagliptin as a promising repurposing drug to treat PD.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Vildagliptina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Linhagem Celular Tumoral , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Biomed Pharmacother ; 145: 112389, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775235

RESUMO

Parkinson's disease (PD) is a multifactorial neurodegenerative disease with damages to mitochondria and endoplasmic reticulum (ER), followed by neuroinflammation. We previously reported that a triple herbal extract DA-9805 in experimental PD toxin-models had neuroprotective effects by alleviating mitochondrial damage and oxidative stress. In the present study, we investigated whether DA-9805 could suppress ER stress and neuroinflammation in vitro and/or in vivo. Pre-treatment with DA-9805 (1 µg/ml) attenuated upregulation of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and cleaved caspase-3 in SH-SY5Y neuroblastoma cells treated with thapsigargin (1 µg/ml) or tunicamycin (2 µg/ml). In addition, DA-9805 prevented the production of IL-1ß, IL-6, TNF-α and nitric oxide through inhibition of NF-κB activation in BV2 microglial cells stimulated with lipopolysaccharides (LPS). Intraperitoneal injection of LPS (10 mg/kg) into mice can induce acute neuroinflammation and dopaminergic neuronal cell death. Oral administration of DA-9805 (10 or 30 mg/kg/day for 3 days before LPS injection) prevented loss of dopaminergic neurons and activation of microglia and astrocytes in the substantia nigra in LPS-injected mouse models. Taken together, these results indicate that DA-9805 can effectively prevent ER stress and neuroinflammation, suggesting that DA-9805 is a multitargeting and disease-modifying therapeutic candidate for PD.


Assuntos
Antiparkinsonianos , Estresse do Retículo Endoplasmático , Inflamação , Extratos Vegetais , Animais , Humanos , Masculino , Camundongos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Neuroblastoma/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Substância Negra/efeitos dos fármacos
7.
Pharmacol Rep ; 74(1): 67-83, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34762280

RESUMO

BACKGROUND: Prolonged inflammation, oxidative stress, and protein aggregation are important factors contributing to Parkinson's disease (PD) pathology. A known ROS generator, pesticide paraquat (PQ), was indicated as an environmental substance potentially increasing the incidence of PD and is used to model this disease. We investigated if a combination of inflammation and oxidative stress in subthreshold doses would exacerbate the modelled neuropathology. METHODS: We examined the late effects of acute or repeated peripheral inflammation induced by low dose of LPS (10 µg/kg, ip) on PQ toxicity in the rat nigrostriatal dopaminergic pathway, microglial activation markers and expression of major Lewy bodies proteins, α-synuclein and synphilin-1. RESULTS: We observed that LPS increased, while PQ decreased body temperature and microglia CD11b expression in the SN. Single LPS pretreatment, 3 h before repeated weekly PQ injections (4×) slightly aggravated neuronal degeneration in the SN. Moreover, degeneration of dopaminergic neurons after weekly repeated inflammation itself (4×) was observed. Interestingly, repeated LPS administration combined with each PQ dose counteracted such effect. The expression of α-synuclein decreased after repeated LPS injections, while only combined, repeated LPS and PQ treatment lowered the levels of synphilin-1. Therefore, α-synuclein and synphilin-1 expression change was influenced by different mechanisms. Concomitantly, decreased levels of the two proteins correlated with decreased degeneration of dopaminergic neurons and with a normalized microglia activation marker. CONCLUSIONS: Our results indicate that both oxidative insult triggered by PQ and inflammation caused by peripheral LPS injection can individually induce neurotoxicity. Those factors act through different mechanisms that are not additive and not selective towards dopaminergic neurons, probably implying microglia. Repeated, but small insults from oxidative stress and inflammation when administered in significant time intervals can counteract each other and even act protective as a preconditioning effect. The timing of such repetitive insults is also of essence.


Assuntos
Proteínas de Transporte/metabolismo , Lipopolissacarídeos/farmacologia , Microglia , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Substância Negra , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Exposição Ambiental , Herbicidas/toxicidade , Inflamação/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade , Substâncias Protetoras/farmacologia , Ratos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
8.
Clin Exp Pharmacol Physiol ; 49(1): 122-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494284

RESUMO

Previous studies reveal that hydrogen sulphide (H2 S) exerts neuroprotection against neurotoxin-induced Parkinson's disease (PD), but the underlying mechanism remains elusive. The present study was aimed to investigate whether H2 S inhibits neuronal apoptosis of substantia nigra with the involvement of autophagy via promoting leptin signalling in 6-hydroxydopamine (6-OHDA)-induced PD rats. In this study, neuronal apoptosis was analysed by TUNEL staining, the activity of caspase-3 was measured by Caspase-3 fluorometric assay kit, the expressions of Bax, Bcl-2, Beclin-1, LC3II, P62 and leptin were determined by Western blot analysis, and the numbers of autophagosomes and autolysosomes were assessed by transmission electron microscopy. Results showed that NaHS, a donor of exogenous H2 S, mitigates 6-OHDA-induced the increases in the numbers of TUNEL-positive cells, the activity of caspase-3 and the expression of Bax, and attenuates 6-OHDA-induced a decrease in the expression of Bcl-2 in substantia nigra of rats. In addition, 6-OHDA enhanced the expressions of Beclin-1, LC3-II and P62, increased the number of autophagosomes, and decreased the number of autolysosomes in the substantia nigra, which were also blocked by administration of NaHS. Furthermore, NaHS reversed 6-OHDA-induced the down-regulation of leptin expression in the substantia nigra, and treatment with leptin-OBR, a blocking antibody of leptin receptor, attenuated the inhibition of NaHS on neuronal apoptosis and the improvement of NaHS on the blocked autophagic flux in substantia nigra of 6-OHDA-treated rats. Taken together, these results demonstrated that H2 S attenuates neuronal apoptosis of substantia nigra depending on restoring impaired autophagic flux through up-regulating leptin signalling in PD.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Sulfeto de Hidrogênio/uso terapêutico , Leptina/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Substância Negra/efeitos dos fármacos , Animais , Autofagossomos/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Masculino , Microscopia Eletrônica de Transmissão , Fármacos Neuroprotetores/farmacologia , Oxidopamina/farmacologia , Transtornos Parkinsonianos/patologia , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo , Substância Negra/patologia
9.
Cells ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34943983

RESUMO

CYP2D enzymes engage in the synthesis of endogenous neuroactive substances (dopamine, serotonin) and in the metabolism of neurosteroids. The present work investigates the effect of iloperidone on CYP2D enzyme expression and activity in rat brains and livers. Iloperidone exerted a weak direct inhibitory effect on CYP2D activity in vitro in the liver and brain microsomes (Ki = 11.5 µM and Ki = 462 µM, respectively). However, a two-week treatment with iloperidone (1 mg/kg ip.) produced a significant decrease in the activity of liver CYP2D, which correlated positively with the reduced CYP2D1, CYP2D2 and CYP2D4 protein and mRNA levels. Like in the liver, iloperidone reduced CYP2D activity and protein levels in the frontal cortex and cerebellum but enhanced these levels in the nucleus accumbens, striatum and substantia nigra. Chronic iloperidone did not change the brain CYP2D4 mRNA levels, except in the striatum, where they were significantly increased. In conclusion, by affecting CYP2D activity in the brain, iloperidone may modify its pharmacological effect, via influencing the rate of dopamine and serotonin synthesis or the metabolism of neurosteroids. By elevating the CYP2D expression/activity in the substantia nigra and striatum (i.e., in the dopaminergic nigrostriatal pathway), iloperidone may attenuate extrapyramidal symptoms, while by decreasing the CYP2D activity and metabolism of neurosteroiods in the frontal cortex and cerebellum, iloperidone can have beneficial effects in the treatment of schizophrenia. In the liver, pharmacokinetic interactions involving chronic iloperidone and CYP2D substrates are likely to occur.


Assuntos
Antipsicóticos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Isoxazóis/farmacologia , Piperidinas/farmacologia , Esquizofrenia/tratamento farmacológico , Animais , Antipsicóticos/efeitos adversos , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoxazóis/efeitos adversos , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Piperidinas/efeitos adversos , Ratos , Ratos Wistar , Esquizofrenia/genética , Esquizofrenia/metabolismo , Substância Negra/diagnóstico por imagem , Substância Negra/efeitos dos fármacos
10.
Brain Res ; 1773: 147705, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34744015

RESUMO

Saporin conjugated to oxytocin (OXY-SAP) destroys neurons expressing oxytocinergic receptors. When injected unilaterally in the substantia nigra of male rats, OXY-SAP causes a dose-dependent decrease up to 55 % in nigral Tyrosine Hydroxylase (TH)-immunoreactivity compared to control mock peptide BLANK-SAP- and PBS-treated rats or the contralateral substantia nigra. TH decrease was parallel to a dopamine content decrease in the ipsilateral striatum compared to BLANK-SAP- or PBS-treated rats or the contralateral striatum. OXY-SAP-treated rats showed a small but significant increase of locomotor activity 28 days after intranigral injection in the Open field test compared to BLANK-SAP- or PBS-treated rats, in line with an inhibitory role of nigral oxytocin on locomotor activity. OXY-SAP-, but not BLANK-SAP- or PBS-treated rats, also showed marked dose-dependent rotational turning ipsilateral to the injected substantia nigra when challenged with d-amphetamine, but not with apomorphine. Under isoflurane anesthesia OXY-SAP-treated rats showed levels of extracellular dopamine in the dialysate from the ipsilateral striatum only half those of BLANK-SAP- or PBS-treated rats or the contralateral striatum. When treated with d-amphetamine, OXY-SAP_60/120 rats showed increased extracellular dopamine levels in the dialysate from the ipsilateral striatum two third/one third only of those found in BLANK-SAP- or PBS-treated rats or the contralateral striatum, respectively. These results show that OXY-SAP destroys nigrostriatal dopaminergic neurons expressing oxytocin receptors leading to a reduced striatal dopamine function.


Assuntos
Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ocitocina/análogos & derivados , Saporinas/farmacologia , Substância Negra/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Ocitocina/farmacologia , Ratos , Comportamento Estereotipado/efeitos dos fármacos , Substância Negra/metabolismo
11.
Nature ; 599(7886): 650-656, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732887

RESUMO

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Morte Celular , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Progressão da Doença , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Camundongos , Destreza Motora/efeitos dos fármacos , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Fenótipo , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
12.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768962

RESUMO

Parkinson's disease (PD) is a prevalent movement disorder characterized by the progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). The 6-hydroxydopamine (6-OHDA) lesion is still one of the most widely used techniques for modeling Parkinson's disease (PD) in rodents. Despite commonly used in rats, it can be challenging to reproduce a similar lesion in mice. Moreover, there is a lack of characterization of the extent of behavioral deficits and of the neuronal loss/neurotransmitter system in unilateral lesion mouse models. In this study, we present an extensive behavioral and histological characterization of a unilateral intrastriatal 6-OHDA mouse model. Our results indicate significant alterations in balance and fine motor coordination, voluntary locomotion, and in the asymmetry's degree of forelimb use in 6-OHDA lesioned animals, accompanied by a decrease in self-care and motivational behavior, common features of depressive-like symptomatology. These results were accompanied by a decrease in tyrosine hydroxylase (TH)-labelling and dopamine levels within the nigrostriatal pathway. Additionally, we also identify a marked astrocytic reaction, as well as proliferative and reactive microglia in lesioned areas. These results confirm the use of unilateral intrastriatal 6-OHDA mice for the generation of a mild model of nigrostriatal degeneration and further evidences the recapitulation of key aspects of PD, thereby being suitable for future studies beholding new therapeutical interventions for this disease.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Animais , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Corpo Estriado/patologia , Transtorno Depressivo/induzido quimicamente , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora/efeitos dos fármacos , Destreza Motora/fisiologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neuroglia/fisiologia , Transtornos Parkinsonianos/patologia , Fenótipo , Especificidade da Espécie , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Substância Negra/fisiopatologia , Fatores de Tempo
13.
J Neuroinflammation ; 18(1): 225, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635136

RESUMO

Inflammation may contribute to multiple brain pathologies. One cause of inflammation is lipopolysaccharide/endotoxin (LPS), the levels of which are elevated in blood and/or brain during bacterial infections, gut dysfunction and neurodegenerative diseases, such as Parkinson's disease. How inflammation causes neuronal loss is unclear, but one potential mechanism is microglial phagocytosis of neurons, which is dependent on the microglial P2Y6 receptor. We investigated here whether the P2Y6 receptor was required for inflammatory neuronal loss. Intraperitoneal injection of LPS on 4 successive days resulted in specific loss of dopaminergic neurons (measured as cells staining with tyrosine hydroxylase or NeuN) in the substantia nigra of wild-type mice, but no neuronal loss in cortex or hippocampus. This supports the hypothesis that neuronal loss in Parkinson's disease may be driven by peripheral LPS. By contrast, there was no LPS-induced neuronal loss in P2Y6 receptor knockout mice. In vitro, LPS-induced microglial phagocytosis of cells was prevented by inhibition of the P2Y6 receptor, and LPS-induced neuronal loss was reduced in mixed glial-neuronal cultures from P2Y6 receptor knockout mice. This supports the hypothesis that microglial phagocytosis contributes to inflammatory neuronal loss, and can be prevented by blocking the P2Y6 receptor, suggesting that P2Y6 receptor antagonists might be used to prevent inflammatory neuronal loss in Parkinson's disease and other brain pathologies involving inflammatory neuronal loss.


Assuntos
Lipopolissacarídeos/toxicidade , Neurônios/metabolismo , Neurônios/patologia , Receptores Purinérgicos P2/deficiência , Substância Negra/metabolismo , Substância Negra/patologia , Animais , Linhagem Celular Transformada , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Células PC12 , Ratos , Substância Negra/efeitos dos fármacos
14.
Neurosci Lett ; 765: 136291, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34666119

RESUMO

The study aimed to investigate the effects of orexin-B in Parkinson's disease. The present study showed that orexin-B exerted marked excitatory effects via orexin-2 receptor on the nigral dopaminergic neurons in MPTP parkinsonian mice, while blocking orexin-2 receptor decreased the firing rate of dopaminergic neurons significantly. Furthermore, intracerebroventricular application of orexin-B relieved the degeneration of dopaminergic neurons, increased the general spontaneous activity and alleviated motor coordination in MPTP parkinsonian mice. The present study suggests that orexin-B could exert protective effects on dopaminergic neurons and improve motor disorders in parkinsonian mice. Such protective effects of orexin-B on Parkinson's disease may be partially attributed to the excitatory effects on the nigral dopaminergic neurons.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Intoxicação por MPTP/patologia , Orexinas/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Intoxicação por MPTP/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Motores/etiologia , Degeneração Neural/patologia , Orexinas/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
15.
Neuroreport ; 32(17): 1379-1387, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34718250

RESUMO

OBJECTIVES: Paeoniflorin, an active component of Radix Paeoniae Alba, has a neuroprotective effect in Parkinson's animal models. However, its mechanism of action remains to be determined. METHODS: In this study, we hypothesized that the neuroprotective effect of paeoniflorin occurs through the α-synuclein/protein kinase C δ subtype (PKC-δ) signaling pathway. We tested our hypothesis in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease. We evaluated the effects of paeoniflorin on the expression levels of signal components of the α-synuclein/PKC-δ pathway, cellular apoptosis and motor performance. RESULTS: Our results demonstrated that paeoniflorin restored the motor performance impairment caused by MPTP, inhibited apoptosis, and protected the ultrastructure of neurons. Paeoniflorin treatment also resulted in the dose-dependent upregulation of an antiapoptotic protein, B-cell lymphoma-2, at the mRNA and protein levels, similar to the effects of the positive control, selegiline. In contrast, paeoniflorin treatment downregulated the expression of pro-apoptotic proteins BCL2-Associated X2, α-synuclein, and PKC-δ at the mRNA and protein levels, as well as the level of the activated form of nuclear factor kappa B (p-NF-κB p65). CONCLUSIONS: Thus, our results showed that paeoniflorin exerts its neuroprotective effect by regulating the α-synuclein/PKC-δ signaling pathway to reduce neuronal apoptosis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Glucosídeos/farmacologia , Monoterpenos/farmacologia , Transtornos Parkinsonianos/metabolismo , Proteína Quinase C-delta/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , alfa-Sinucleína/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Anexina A5/efeitos dos fármacos , Anexina A5/metabolismo , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Camundongos , Microscopia Eletrônica de Transmissão , Neurotoxinas , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Proteína Quinase C-delta/metabolismo , Teste de Desempenho do Rota-Rod , Selegilina/farmacologia , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismo
16.
Bull Exp Biol Med ; 171(4): 425-430, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34542745

RESUMO

We studied the possibilities of inhibition of neurodegeneration in MPTP-induced model of Parkinson's disease (PD) in C57Bl/6J mice and transgenic model of early PD stage (5-monthold B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J mice) by autophagy activation through mTOR-dependent and mTOR-independent pathways with rapamycin and trehalose, respectively. Therapy with autophagy inducers in a "postponed" mode (7 days after MPTP intoxication) restored the expression of the dopaminergic neuron marker tyrosine hydroxylase and markedly improved cognitive function in the conditioned passive avoidance response (CPAR; fear memory). The transgenic model also showed an increase in the expression of tyrosine hydroxylase in the nigrostriatal system of the brain. An enhanced therapeutic effect of the combined treatment with the drugs was revealed on the expression of tyrosine hydroxylase, but not in the CPAR test. Thus, activation of both pathways of autophagy regulation in PD models with weakened neuroinflammation can restore the dopaminergic function of neurons and cognitive activity in mice.


Assuntos
Autofagia/efeitos dos fármacos , Doenças Neuroinflamatórias/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Modelos Animais de Doenças , Inibidores de MTOR/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/genética , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Serina-Treonina Quinases TOR/fisiologia , Trealose/farmacologia , Trealose/uso terapêutico
17.
J Steroid Biochem Mol Biol ; 214: 105989, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478828

RESUMO

Neuroinflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Genistein is an estrogen-like phytoestrogen that can exert biological effects via the crosstalk of estrogen receptor and insulin-like growth factor 1 receptor (IGF-1R). The present study aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) and IGF-1R in the anti-inflammatory effects of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in ovariectomized rats. Our results showed that genistein treatment could ameliorate the apomorphine-induced rotational behavior in LPS-induced inflammatory PD rat model. Genistein attenuated LPS-induced decrease of the contents of dopamine (DA) and its metabolites in striatum as well as the loss of tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantia nigra (SN) of the lesioned side, which could be blocked by GPER antagonist G15 or IGF-1R antagonist JB1. Meanwhile, G15 or JB1 could attenuate the anti-inflammatory effects of genistein in LPS-induced microglial activation and production of tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, genistein could inhibit the LPS-induced phosphorylation of p38, JNK, ERK and IκB in the lesioned side of SN and these effects could also be blocked by G15 or JB1. Taken together, our data provide the first evidence that genistein can inhibit the increase of microglia and protect dopaminergic neurons at least in part via GPER and IGF-1R signaling pathways in ovariectomized PD rat model.


Assuntos
Genisteína/farmacologia , Lipopolissacarídeos/metabolismo , Microglia/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Substância Negra/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Neurônios Dopaminérgicos/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
18.
Neurobiol Dis ; 159: 105509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537326

RESUMO

Multiple System Atrophy (MSA) is a rare neurodegenerative synucleinopathy which leads to severe disability followed by death within 6-9 years of symptom onset. There is compelling evidence suggesting that biological trace metals like iron and copper play an important role in synucleinopathies like Parkinson's disease and removing excess brain iron using chelators could slow down the disease progression. In human MSA, there is evidence of increased iron in affected brain regions, but role of iron and therapeutic efficacy of iron-lowering drugs in pre-clinical models of MSA have not been studied. We studied age-related changes in iron metabolism in different brain regions of the PLP-αsyn mice and tested whether iron-lowering drugs could alleviate disease phenotype in aged PLP-αsyn mice. Iron content, iron-ferritin association, ferritin protein levels and copper-ceruloplasmin association were measured in prefrontal cortex, putamen, substantia nigra and cerebellum of 3, 8, and 20-month-old PLP-αsyn and age-matched non-transgenic mice. Moreover, 12-month-old PLP-αsyn mice were administered deferiprone or ceruloplasmin or vehicle for 2 months. At the end of treatment period, motor testing and stereological analyses were performed. We found iron accumulation and perturbed iron-ferritin interaction in substantia nigra, putamen and cerebellum of aged PLP-αsyn mice. Furthermore, we found significant reduction in ceruloplasmin-bound copper in substantia nigra and cerebellum of the PLP-αsyn mice. Both deferiprone and ceruloplasmin prevented decline in motor performance in aged PLP-αsyn mice and were associated with higher neuronal survival and reduced density of α-synuclein aggregates in substantia nigra. This is the first study to report brain iron accumulation in a mouse model of MSA. Our results indicate that elevated iron in MSA mice may result from ceruloplasmin dysfunction and provide evidence that targeting iron in MSA could be a viable therapeutic option.


Assuntos
Encéfalo/efeitos dos fármacos , Ferro/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Ceruloplasmina/farmacologia , Cobre/metabolismo , Deferiprona/farmacologia , Modelos Animais de Doenças , Ferritinas/efeitos dos fármacos , Ferritinas/metabolismo , Quelantes de Ferro/farmacologia , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Putamen/efeitos dos fármacos , Putamen/metabolismo , Putamen/patologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/genética
19.
Neurosci Lett ; 765: 136251, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536508

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), characterized by motor dysfunction. While PD symptoms are well treated with L-DOPA, continuous use can cause L-DOPA-induced dyskinesia (LID). We have previously demonstrated that sub-anesthetic ketamine attenuated LID development in rodents, measured by abnormal involuntary movements (AIMs), and reduced the density of maladaptive striatal dendritic mushroom spines. Microglia may play a role by phagocytosing maladaptive neuronal spines. In this exploratory study, we hypothesized that ketamine would prevent AIMs and change microglia ramified morphology - an indicator of a microglia response. Unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats were primed with daily injections of L-DOPA for 14 days, treated on days 0 and 7 for 10-hours with sub-anesthetic ketamine (i.p.), and we replicated that this attenuated LID development. We further extended our prior work by showing that while ketamine treatment did lead to an increase of striatal interleukin-6 in dyskinetic rats, indicating a modulation of an inflammatory response, it did not change microglia number or morphology in the dyskinetic striatum. Yet an increase of CD68 in the SNpc of 6-OHDA-lesioned hemispheres post-ketamine indicates increased microglia phagocytosis suggestive of a lingering microglial response to 6-OHDA injury in the SNpc pointing to possible anti-inflammatory action in the PD model in addition to anti-dyskinetic action. In conclusion, we provide further support for sub-anesthetic ketamine treatment of LID. The mechanisms of action for ketamine, specifically related to inflammation and microglia phagocytic functions, are emerging, and require further examination.


Assuntos
Discinesia Induzida por Medicamentos/prevenção & controle , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ketamina/administração & dosagem , Levodopa/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/patologia , Humanos , Levodopa/efeitos adversos , Masculino , Microglia/efeitos dos fármacos , Microglia/patologia , Fagocitose/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
20.
J Chem Neuroanat ; 117: 102016, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454019

RESUMO

The thermogenesis resulting from brown adipose tissue (BAT)-induced energy consumption is an important method of energy regulation. It has been reported that brain-derived neurotrophic factor (BDNF)-positive neurons in the paraventricular nucleus (PVN) can regulate adaptive thermogenesis in interscapular brown adipose tissue (IBAT), but the upstream regulatory mechanism is still unclear. Our previous studies have found that a large number of dopamine (DA) receptors (DRs) are expressed on BDNF-positive neurons in the PVN and that the substantia nigra (SN) can directly project to the PVN (forming the SN-PVN pathway). Therefore, we speculate that DA in the SN can regulate the expression of BDNF via DRs and then affect IBAT thermogenesis. In this study, bilateral SN lesions were induced in rats with 6-hydroxydopamine (6-OHDA), and the altered expression of DRs and BDNF in the PVN and the metabolic changes in IBAT were studied via double immunofluorescence and western blotting. The results showed that BDNF-positive neurons in the PVN expressed DR 1 (D1) and DR 2 (D2) and were surrounded by a large number of tyrosine hydroxylase (TH)-positive nerve fibers. Compared with the control group, the 6-OHDA group exhibited significantly fewer TH-positive neurons and significantly lower TH expression in the SN, but body weight, IBAT weight and food consumption did not differ between the groups. In the PVN, BDNF expression was upregulated in the 6-OHDA group, while D2 and TH expression was downregulated. In IBAT, the expression of uncoupling protein-1 (UCP-1), phosphorylated hormone-sensitive lipase (p-HSL), TH and ß3-adrenergic receptor (ß3-AR) was increased, while the expression of fatty acid synthase (FAS) was decreased. The IBAT cell diameter was also decreased in the 6-OHDA group. The results suggest that the SN-PVN pathway may be an upstream neural pathway that can affect BDNF expression in the PVN and that DRs may mediate its regulatory effects. This study expands our understanding of the relationship between DA and obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Dopamina D2/metabolismo , Substância Negra/metabolismo , Termogênese/fisiologia , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Masculino , Oxidopamina/toxicidade , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...